
Mastodon	Setup
Howdy,	stranger!	This	document	is	the	other	half	of	this	video,	in

which	I	set	up	a	single-server	instance	of	Mastodon.	This	was

assembled	on	9	April	2017,	and	there’s	a	good	chance	that	some	of	the

specifics	here	will	change	over	time.	I’ll	keep	an	updated	version	up	on

wogan.blog.

0.	Pre-Prerequisites
At	a	bare	minimum,	you’re	going	to	need:

A	domain	name,	with	the	ability	to	add	an	A	record	yourself

A	free	mailgun.com	account,	with	the	account	verified	and	your

sandbox	enabled	to	send	to	you

A	1GB	RAM	machine	with	decent	network	access.	This

document	uses	a	DigitalOcean	VM.

This	setup	procedure	skips	a	few	things	that	you	may	want	to	do	on	a

“productionized”	or	“community”	instance	of	Mastodon,	such	as

configuring	S3	file	storage,	or	using	a	non-sandbox	email	send

account.	You	may	also	want	a	beefier	machine	than	just	1GB	RAM.

For	reference,	the	OS	version	in	use	is	 Ubuntu	16.04.2	LTS 	and	all

the	commands	are	being	run	from	the	 root 	user	unless	explicitly

specified.

https://wogan.blog/
http://mailgun.com/
https://m.do.co/c/c0648e7493e2

1.	Getting	started!
The	first	couple	steps:

Create	the	VM

Point	your	domain	to	it	immediately,	by	setting	the	A	record	to

the	public	IP

Log	into	the	VM

Set	your	root	password

Create	a	new	Mastodon	user:	 adduser	mastodon

Update	the	apt	cache:	 apt-get	update

2.	Install	Prerequisites
Now	we’ll	grab	all	the	prerequisite	software	packages	in	one	go:

apt-get	install	imagemagick	ffmpeg	libpq-dev	libxml2-dev	

libxslt1-dev	nodejs	file	git	curl	redis-server	redis-tool

s	postgresql	postgresql-contrib	autoconf	bison	build-esse

ntial	libssl-dev	libyaml-dev	libreadline6-dev	zlib1g-dev	

libncurses5-dev	libffi-dev	libgdbm3	libgdbm-dev	git-core	

letsencrypt	nginx

That’ll	take	a	little	while	to	run.	When	it’s	done,	you’ll	need	Node

(version	4)	and	yarn:

curl	-sL	https://deb.nodesource.com/setup_4.x	|	bash	-

apt-get	install	nodejs

npm	install	-g	yarn

You’ll	also	want	to	be	sure	that	redis	is	running,	so	do:

service	redis-server	start

3.	Configure	Database
With	Postgres	installed,	you	need	to	create	a	new	user.	Drop	into	the

postgres	user	and	create	a	mastodon	account:

su	-	postgres

psql

CREATE	USER	mastodon	CREATEDB;

\q

exit

Later	on	we’ll	configure	mastodon	to	use	that.

4.	Generate	SSL	certificate
Before	configuring	nginx,	we	can	generate	the	files	we’ll	need	to

support	SSL.	First,	kill	nginx:

service	nginx	stop

Now	proceed	through	the	LetsEncrypt	process:

Run	 letsencrypt	certonly

Enter	your	email	address

Read	and	acknowledge	the	terms

Enter	the	domain	name	you	chose

If	the	domain	name	has	propagated	(which	is	why	it’s	important	to	do

this	early),	LetsEncrypt	will	find	your	server	and	issue	the	certificate	in

one	go.	If	this	step	fails,	you	may	need	to	wait	a	while	longer	for	your

domain	to	propagate	so	that	LetsEncrypt	can	see	it.

5.	Configure	nginx
With	the	SSL	cert	done,	time	to	configure	nginx!

cd	/etc/nginx/sites-available

nano	mastodon

Simply	substitute	your	domain	name	where	it	says	 example.com 	in

this	snippet	(lines	9,	15,	23,	24),	then	paste	the	entire	thing	into	the

file	and	save	it.

map	$http_upgrade	$connection_upgrade	{

		default	upgrade;

		''						close;

}

server	{

		listen	80;

		listen	[::]:80;

		server_name	example.com;

		return	301	https://$host$request_uri;

}

server	{

		listen	443	ssl;

		server_name	example.com;

		ssl_protocols	TLSv1.2;

		ssl_ciphers	EECDH+AESGCM:EECDH+AES;

		ssl_ecdh_curve	prime256v1;

		ssl_prefer_server_ciphers	on;

		ssl_session_cache	shared:SSL:10m;

		ssl_certificate					/etc/letsencrypt/live/example.com/f

ullchain.pem;

		ssl_certificate_key	/etc/letsencrypt/live/example.com/p

rivkey.pem;

		keepalive_timeout				70;

		sendfile													on;

		client_max_body_size	0;

		gzip	off;

		root	/home/mastodon/live/public;

		add_header	Strict-Transport-Security	"max-age=31536000;

	includeSubDomains";

		location	/	{

				try_files	$uri	@proxy;

		}

		location	@proxy	{

				proxy_set_header	Host	$host;

				proxy_set_header	X-Real-IP	$remote_addr;

				proxy_set_header	X-Forwarded-For	$proxy_add_x_forward

ed_for;

				proxy_set_header	X-Forwarded-Proto	https;

				proxy_pass_header	Server;

				proxy_pass	http://localhost:3000;

				proxy_buffering	off;

				proxy_redirect	off;

				proxy_http_version	1.1;

				proxy_set_header	Upgrade	$http_upgrade;

				proxy_set_header	Connection	$connection_upgrade;

				tcp_nodelay	on;

		}

		location	/api/v1/streaming	{

				proxy_set_header	Host	$host;

				proxy_set_header	X-Real-IP	$remote_addr;

				proxy_set_header	X-Forwarded-For	$proxy_add_x_forward

ed_for;

				proxy_set_header	X-Forwarded-Proto	https;

				proxy_pass	http://localhost:4000;

				proxy_buffering	off;

				proxy_redirect	off;

				proxy_http_version	1.1;

				proxy_set_header	Upgrade	$http_upgrade;

				proxy_set_header	Connection	$connection_upgrade;

				tcp_nodelay	on;

		}

		error_page	500	501	502	503	504	/500.html;

}

Once	you’ve	saved	and	closed	the	file,	enable	it	by	creating	a	symlink:

ln	-s	/etc/nginx/sites-available/mastodon	/etc/nginx/site

s-enabled/mastodon

Then	test	that	the	file	is	OK	by	running	 nginx	-t .	If	it	reports	any

errors,	you’ll	want	to	fix	them	before	moving	on.	If	the	file	comes	back

OK,	fire	it	up!

service	nginx	start

Open	a	browser	tab	and	navigate	to	your	domain.	You	should	get	a	502

Gateway	Error,	secured	with	your	LetsEncrypt	cert.	If	not,	go	back	and

make	sure	you’ve	followed	every	preceding	step	correctly.

6.	Configure	Systemd
Mastodon	consists	of	3	services	(web,	sidekiq	and	streaming),	and	we

need	to	create	config	files	for	each.	You	can	use	the	code	straight	from

this	page,	as-is.

cd	/etc/systemd/system/

The	first	file	is	called	 mastodon-web.service 	and	consists	of	the

following:

[Unit]

Description=mastodon-web

After=network.target

[Service]

Type=simple

User=mastodon

WorkingDirectory=/home/mastodon/live

Environment="RAILS_ENV=production"

Environment="PORT=3000"

ExecStart=/home/mastodon/.rbenv/shims/bundle	exec	puma	-C

	config/puma.rb

TimeoutSec=15

Restart=always

[Install]

WantedBy=multi-user.target

The	next	file	is	called	 mastodon-sidekiq.service 	and	consists	of	the

following:

[Unit]

Description=mastodon-sidekiq

After=network.target

[Service]

Type=simple

User=mastodon

WorkingDirectory=/home/mastodon/live

Environment="RAILS_ENV=production"

Environment="DB_POOL=5"

ExecStart=/home/mastodon/.rbenv/shims/bundle	exec	sidekiq

	-c	5	-q	default	-q	mailers	-q	pull	-q	push

TimeoutSec=15

Restart=always

[Install]

WantedBy=multi-user.target

The	final	file	is	called	 mastodon-streaming.service 	and	consists	of

the	following:

[Unit]

Description=mastodon-streaming

After=network.target

[Service]

Type=simple

User=mastodon

WorkingDirectory=/home/mastodon/live

Environment="NODE_ENV=production"

Environment="PORT=4000"

ExecStart=/usr/bin/npm	run	start

TimeoutSec=15

Restart=always

[Install]

WantedBy=multi-user.target

Once	all	those	are	saved,	we’ve	done	all	we	can	with	the	root	user	for

now.

7.	Switch	to	the	Mastodon	user
If	you	haven’t	yet	logged	into	the	server	as	 mastodon ,	do	so	now	in	a

second	SSH	window.	We’re	going	to	set	up	ruby	and	pull	down	the

actual	Mastodon	code	here.

8.	Install	rbenv,	rbenv-build	and
Ruby
As	the	 mastodon 	user,	clone	the	rbenv	repo	into	your	home	folder:

git	clone	https://github.com/rbenv/rbenv.git	~/.rbenv

When	that’s	done,	link	the	bin	folder	to	your	PATH:

echo	'export	PATH="$HOME/.rbenv/bin:$PATH"'	>>	~/.bash_pr

ofile

Then	add	the	init	script	to	your	profile:

echo	'eval	"$(rbenv	init	-)"'	>>	~/.bash_profile

That	line	is	valid	for	the	OS	we’re	on	(Ubuntu	16.04	LTS)	but	it	may

differ	slightly	for	you.	You	can	run	 ~/.rbenv/bin/rbenv	init 	to

check	what	line	you	need	to	use.

Once	you’ve	saved	that,	log	out	of	the	mastodon	user,	then	log	back	in

to	complete	the	rest	of	this	section.

Install	the	ruby-build	plugin	like	so:

git	clone	https://github.com/rbenv/ruby-build.git	~/.rben

v/plugins/ruby-build

Then	install	Ruby	proper:

rbenv	install	2.3.1

This	could	take	up	to	15	minutes	to	run!

When	it’s	done,	change	to	your	home	folder	and	clone	the	Mastodon

source:

cd	~

git	clone	https://github.com/tootsuite/mastodon.git	live

cd	live

Next	up,	dependencies!	Always	more	dependencies	-	we’ll	install

bundler,	then	use	that	to	install	everything	else:

gem	install	bundler

bundle	install	--deployment	--without	development	test

yarn	install

If	all	of	those	succeeded,	we’re	ready	to	configure!

9.	Configure	Mastodon
Before	diving	into	the	configuration	file,	generate	3	secret	strings	by

running	this	command	3	times:

bundle	exec	rake	secret

Copy	those	out	to	a	text	file	-	you’ll	paste	them	back	in	later.	Create	the

config	file	by	copying	the	template,	then	editing	it	with	nano:

cp	.env.production.sample	.env.production

nano	.env.production

Inside	this	file	we’re	going	to	make	several	quick	changes.

REDIS_HOST=localhost

DB_HOST=/var/run/postgresql

DB_USER=mastodon

DB_NAME=mastodon_production

To	enable	federation,	you	need	to	set	your	domain	name	here:

LOCAL_DOMAIN=example.com

Then,	for	these	3,	paste	in	each	key	you	generated	earlier:

PAPERCLIP_SECRET=

SECRET_KEY_BASE=

OTP_SECRET=

Finally,	configure	your	SMTP	details:

SMTP_LOGIN=	(whatever	your	mailgun	is)

SMTP_PASSWORD=	(whatever	your	mailgun	is)

Save	and	close	the	file.

10.	Run	installer
If	you’ve	done	everything	correctly,	this	command	will	install	the

database:

RAILS_ENV=production	bundle	exec	rails	db:setup

If	that	passes	successfully	(it’ll	echo	out	every	command	it	runs),	you

can	then	precompile	the	site	assets,	which	may	take	a	few	minutes:

RAILS_ENV=production	bundle	exec	rails	assets:precompile

At	this	point,	we’re	almost	ready	to	go!

11.	Configure	cronjob
This	is	technically	optional,	but	highly	recommended	to	keep	your

instance	in	good	order.	As	the	 mastodon 	user,	start	by	determining

where	your	bundle	command	lives:

which	bundle

That	path	will	be	substituted	for	 $bundle .	Now,	edit	your	own

crontab:

crontab	-e

Select	nano	(2)	if	you’re	prompted.	Paste	in	the	following	lines,	making

sure	to	substitute	 $bundle 	for	the	path	you	got	with	 which	bundle :

5	0	*	*	*	RAILS_ENV=production	$bundle	exec	rake	mastodon

:media:clear

10	0	*	*	*	RAILS_ENV=production	$bundle	exec	rake	mastodo

n:push:refresh

15	0	*	*	*	RAILS_ENV=production	$bundle	exec	rake	mastodo

n:feeds:clear

Those	commands	will	run	at	00:05,	00:10	and	00:15	respecively.	Save

and	close	the	crontab.

12.	Log	out	and	return	to	root
We’re	done	with	the	 mastodon 	account.	Log	out	and	return	to	your

root 	shell.

13.	Start	Mastodon
The	moment	of	truth!	Enable	the	Mastodon	services	(so	that	they	start

on	boot):

systemctl	enable	/etc/systemd/system/mastodon-*.service

Then	fire	up	Mastodon	itself:

systemctl	start	mastodon-web.service	mastodon-sidekiq.ser

vice	mastodon-streaming.service

Open	up	a	browser	tab	on	your	domain.	Mastodon	can	take	up	to	30

seconds	to	warm	up,	so	if	you	see	an	error	page,	don’t	fret.	Only	fret	if

it’s	there	for	longer	than	a	minute	-	that	requires	troubleshooting,

which	is	outside	the	scope	of	this	document.

You	should	eventually	get	a	signup	page.	Congratulations!	Register	an

account	for	yourself,	receive	the	confirmation	email,	and	activate	it.

14.	Securing	Mastodon
This	is	by	no	means	a	comprehensive	guide	to	server	security,	but

there	are	two	quick	things	you	can	change	while	the	root	shell	is	open.

Start	by	editing	the	passwd	file:

nano	/etc/passwd

Find	the	 mastodon 	entry	(it’ll	be	near	the	bottom)	and	replace

/bin/bash 	with	 /usr/sbin/nologin .	Save	and	quit.	This	will

prevent	anyone	from	logging	in	as	the	mastodon	user.

Next,	configure	ufw.	First	check	if	it’s	disabled:

ufw	status

It	should	be	off,	since	this	is	a	brand	new	VM.	Configure	it	to	allow

SSH	(port	22)	and	HTTPS	(port	443),	then	turn	it	on:

ufw	allow	22

ufw	allow	443

ufw	enable

y

That	will	prevent	any	connection	attempts	on	other	ports.

15.	Enjoy!
If	you	enjoyed	this	guide,	I’d	appreciate	a	follow!	You	can	find	me	by

searching	 wogan@wogan.im 	in	your	Mastodon	web	UI.	Give	me	a	shout

if	you	were	able	to	get	an	instance	set	up	with	these	instructions,	or	if

you	ran	into	any	problems.

Sources
A	lot	of	this	guide	was	sourced	from	the	official	Production	guide	on

the	Mastodon	Github	page.	I	reorded	it	into	a	logical	sequence	after

running	through	it	for	a	few	tries.

https://github.com/tootsuite/mastodon/blob/master/docs/Running-Mastodon/Production-guide.md

